英特尔通过软硬件为LIama2大模型提供加速

7月21日消息,在Llama 2发布之际,英特尔分享了70亿和130亿参数模型在英特尔AI产品组合上运行的结果,包括Habana Gaudi 2 深度学习加速器、第四代英特尔至强可扩展处理器、至强CPU Max系列和数据中心GPU Max系列等。

在近期发布的MLPerf基准测试中,Gaudi2在大语言模型上展现了出色的训练性能,包括在384个Gaudi2加速器上训练1750亿参数的GPT-3模型所展现的结果。Gaudi2经过验证的高性能使其成为Llama和Llama 2模型训练和推理的高能效解决方案。

下图显示了70亿参数和130亿参数Llama 2模型的推理性能。模型分别在一台Habana Gaudi2设备上运行,batch size=1,输出token长度256,输入token长度不定,使用BF16精度。报告的性能指标为每个token的延迟(不含第一个)。

该测试使用optimum-habana文本生成脚本在Llama模型上运行推理。optimum-habana库能够帮助简化在Gaudi加速器上部署此类模型的流程,仅需极少的代码更改即可实现。

如图所示,对于128至2000输入token,在70亿参数模型上Gaudi2的推理延迟范围为每token 9.0-12.2毫秒,而对于130亿参数模型,范围为每token 15.5-20.4毫秒。

得益于更高的HBM2E带宽,英特尔至强CPU Max系列为以上两个模型提供了更低的延迟。而凭借英特尔AMX加速器,用户可以通过更高的批量尺寸(batch size)来提高吞吐量。

对于70亿和130亿参数的模型,每个第四代至强插槽可提供低于100毫秒的延迟。用户可以分别在两个插槽上同时运行两个并行实例,从而获得更高的吞吐量,并独立地服务客户端。

亦或者,用户可以通过英特尔PyTorch扩展包和DeepSpeed CPU,使用张量并行的方式在两个第四代至强插槽上运行推理,从而进一步降低延迟或支持更大的模型。

英特尔在一个600瓦OAM形态的GPU上评估了Llama 2的70亿参数模型和Llama 2的130亿参数模型推理性能,这个GPU上封装了两个tile,而英特尔只使用其中一个tile来运行推理。

下图显示,对于输入长度为32到2000的token,英特尔数据中心GPU Max系列的一个tile可以为70亿参数模型的推理提供低于20毫秒的单token延迟,130亿参数模型的单token延迟为29.2-33.8毫秒。

因为该GPU上封装了两个tile,用户可以同时并行运行两个独立的实例,每个tile上运行一个,以获得更高的吞吐量并独立地服务客户端。

热门相关:我的治愈系游戏   金粉   富贵不能吟   富贵不能吟   戏精老公今天作死没