赠-地图绘制

basemap地图绘制

地图绘制也是数据可视化的一部分,常用的地图绘制库为basemap工具包,其为matplotlib的子包。本章将讲解如何利用whl文件在Python3环境下安装basemap;学会使用basemap绘制地图;学会缩放区域和绘制散点图;通过综合案例,巩固basemap的绘制地图方法和技巧。
本章主要涉及到的知识点有:

basemap安装:学会basemap的安装方法。
basemap使用:学会利用basemap绘制简单地图。
缩放区域与绘图:学会通过定位经纬度缩放区域与绘制散点图。
综合案例:通过综合案例,巩固basemap的绘制地图方法和技巧。

basemap的使用

basemap是一个强大的绘制地图工具包。本节将讲解如何安装和使用basemap,结合matplotlib,绘制地图。

basemap安装

在anaconda的python3环境中,通过conda命令安装basemap会导致失败,这里通过该网站(https://www.lfd.uci.edu/~gohlke/pythonlibs/)
下载对应版本的Pyproj和basemap的whl文件,如图12.1和12.2所示。


图12.1 Pyproj下载


图12.2 basemap下载

在anaconda环境中,切换到这两个whl文件的路径下,按顺序通过pip依次安装Pyproj和basemap文件,代码如下,安装Pyproj,如图12.3所示,代表Pyproj安装成功。

h:
cd H:\python数据分析\数据
pip install pyproj-1.9.5.1-cp36-cp36m-win_amd64.whl


图12.3 Pyproj安装

以同样的方法安装basemap,代码如下,如图12.4所示,安装basemap。

h:
cd H:\python数据分析\数据
pip install basemap-1.1.0-cp36-cp36m-win_amd64.whl


图12.4 basemap安装

如图12.5所示,通过from mpl_toolkits.basemap import Basemap代码调用该库,发现程序可以运行,代表basemap库安装成功。


图12.5 安装成功

basemap使用

首先,导入需要的第三方库,通过basemap初始化一个地图对象,通过drawcoastlines绘制海岸线,代码如下。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
%matplotlib inline

map1 = Basemap(projection='ortho', lat_0=90, lon_0=-105,
              resolution='l', area_thresh=1000.0)      #初始化地图对象
map1.drawcoastlines()      #绘制海岸线

projection参数是用于定义地图的投影方式;lat_0和lon_0是指定地图的中心坐标,这里的值为美国的中心坐标;resolution参数设置绘制边界的精度,l为低精度;area_thresh参数为阈值,低于该阈值的就不会被绘制。绘制地图如图12.6所示。注意:更多参数详情可参考http://matplotlib.org/basemap/。


图12.6 基本地图
通过drawcountries方法绘制国家边界,代码如下,如图12.7所示。

map1 = Basemap(projection='ortho', lat_0=90, lon_0=-105,
              resolution='l', area_thresh=1000.0) 
map1.drawcoastlines()  #绘制海岸线
map1.drawcountries()   #绘制国家


图12.7 绘制国家

其他常见的绘制方法如下:

drawmapboundary()   #绘制边界
drawstates()          #绘制州
drawcounties()        #绘制县
通过fillcontinents方法为大陆填充颜色,代码如下,如图12.8所示。
map1 = Basemap(projection='ortho', lat_0=90, lon_0=-105,
              resolution='l', area_thresh=1000.0) 
map1.drawcoastlines()  #绘制海岸线
map1.drawcountries()   #绘制国家
map1.fillcontinents(color='blue',alpha=0.5)  #填充颜色


图12.8 填充大陆颜色
通过drawmeridians和drawparallels方法绘制经线和纬线,代码如下,如图12.9所示。

map1 = Basemap(projection='ortho', lat_0=90, lon_0=-105,
              resolution='l', area_thresh=1000.0) 
map1.drawcoastlines()  #绘制海岸线
map1.drawcountries()   #绘制国家
map1.drawmapboundary() #绘制边界
map1.fillcontinents(color='blue',alpha=0.5)  #填充颜色

map1.drawmeridians(np.arange(0, 360, 30))    #绘制经线
map1.drawparallels(np.arange(-90, 90, 30))   #绘制纬线


图12.9 绘制经度和纬度
更换projection参数,换为robin坐标,可将图绘制为平面坐标,代码如下,如图12.10所示。

map1 = Basemap(projection='robin', lat_0=90, lon_0=-105,
              resolution='l', area_thresh=1000.0) 
map1.drawcoastlines()  #绘制海岸线
map1.drawcountries()   #绘制国家
map1.drawmapboundary() #绘制边界
map1.fillcontinents(color='blue',alpha=0.5)  #填充颜色

map1.drawmeridians(np.arange(0, 360, 30))    #绘制经线
map1.drawparallels(np.arange(-90, 90, 30))   #绘制纬线


图12.10 平面坐标

缩放区域与绘图

在实际案例中,需对特定国家或地区进行绘制地图,这样就需要通过llcrnrlon、llcrnrlat、urcrnrlon和urcrnrlat指定左下角经纬度和右上角经纬度,代码如下,如图12.11所示。

map2 = Basemap(projection='stere', lat_0=90, lon_0=-105,
               llcrnrlon=-118.67, llcrnrlat=23.41,
               urcrnrlon=-64.5, urcrnrlat=45.44,
              resolution='l', area_thresh=1000.0) 
map2.drawcoastlines()  #绘制海岸线
map2.drawcountries()   #绘制国家
map2.drawmapboundary() #绘制边界
map2.drawstates()      #绘制州
map2.fillcontinents(color='blue',alpha=0.5)  #填充颜色

map2.drawmeridians(np.arange(0, 360, 30))    #绘制经线
map2.drawparallels(np.arange(-90, 90, 30))   #绘制纬线


图12.11 缩放区域
通过坐标定位,可以在地图上绘制图形,代码如下,如图12.12所示。

map2 = Basemap(projection='stere', lat_0=90, lon_0=-105,
               llcrnrlon=-118.67, llcrnrlat=23.41,
               urcrnrlon=-64.5, urcrnrlat=45.44,
              resolution='l', area_thresh=1000.0) 
map2.drawcoastlines()  #绘制海岸线
map2.drawcountries()   #绘制国家
map2.drawmapboundary() #绘制边界
map2.drawstates()      #绘制州
map2.drawmeridians(np.arange(0, 360, 30))    #绘制经线
map2.drawparallels(np.arange(-90, 90, 30))   #绘制纬线

lon = -74
lat = 40.43
x,y = map2(lon, lat)       #映射坐标
map2.plot(x, y, 'ro', markersize=8)  #绘制散点图

图12.12 绘制散点图
通过matplotlib库的text方法,为散点加入文本注释。

map2 = Basemap(projection='stere', lat_0=90, lon_0=-105,
               llcrnrlon=-118.67, llcrnrlat=23.41,
               urcrnrlon=-64.5, urcrnrlat=45.44,
              resolution='l', area_thresh=1000.0) 
map2.drawcoastlines()  #绘制海岸线
map2.drawcountries()   #绘制国家
map2.drawmapboundary() #绘制边界
map2.drawstates()      #绘制州

map2.drawmeridians(np.arange(0, 360, 30))    #绘制经线
map2.drawparallels(np.arange(-90, 90, 30))   #绘制纬线

lon = -74
lat = 40.43
x,y = map2(lon, lat)       #映射坐标
map2.plot(x, y, 'ro', markersize=8)  #绘制散点图
plt.text(x,y,'New York')   #文本注释


图12.13 文本注释

basemap综合示例

本节将讲解如何通过basemap绘制区域与全球地图,结合具体案例,讲解地图的绘制方法和技巧。

美国人口分布

通过该网站(https://github.com/plotly/datasets/blob/master/2014_us_cities.csv)
下载2014年美国城市的人口数据,读取数据,如图12.14所示,数据总共有四个字段,城市名称、城市人口和经纬度坐标。

图12.14 美国人口数据
通过以下代码,绘制前180个城市的美国人口分布图,如图12.15所示。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
%matplotlib inline

plt.style.use('ggplot')
plt.figure(figsize=(10,6))

map3 = Basemap(projection='stere', lat_0=90, lon_0=-105,
               llcrnrlon=-118.67, llcrnrlat=23.41,
               urcrnrlon=-64.5, urcrnrlat=45.44,
              resolution='l', area_thresh=1000.0) 
map3.drawcoastlines()  #绘制海岸线
map3.drawcountries()   #绘制国家
map3.drawmapboundary() #绘制边界
map3.drawstates()      #绘制州
map3.drawcounties()      # 绘制县

map3.drawmeridians(np.arange(0, 360, 30))    #绘制经线
map3.drawparallels(np.arange(-90, 90, 30))   #绘制纬线

lat = np.array(pop_data["lat"][0:180])                        # 获取维度之维度值
lon = np.array(pop_data["lon"][0:180])                        # 获取经度值
pop = np.array(pop_data["pop"][0:180],dtype=float)    # 获取人口数,转化为numpy浮点型
size = (pop/np.max(pop))*1000 # 计算每个点的大小

x,y = map3(lon,lat)
map3.scatter(x,y,s=size)

plt.title('Population distribution in America')     #加标题

代码分析:
(1)1~5行
导入程序需要的库。
(2)7~8行
设置图表的样式为ggplot,并设置图表的长宽比。
(3)10~21行
定义basemap对象,并绘制出美国的地图底图和经纬度。
(4)23~29
获取前180个数据,并绘制散点图。


图12.15 美国人口分布图
注意:人口如果不转化为numpy浮点型,散点图不会显示出大小不一。

全球地震可视化

通过美国地震局官网(https://earthquake.usgs.gov/earthquakes/feed/v1.0/csv.php)
下载过去一周的地震数据,如图12.16所示。


图12.16 过去一周地震数据下载
读取数据,如图12.17所示,该数据有很多字段,但本次分析中用到的就是经纬度字段和mag字段(震级)。

图12.17 地震数据
对这三个字段查看缺失值,如图12.18所示,mag字段有1个缺失值。

图12.18 查看缺失值
通过过滤剔除到这个缺失值,如图12.19所示。

图12.19 过滤缺失值
通过以下代码,绘制地震分布图,如图12.20所示。


图12.20 全球地震分布图(1)
根据震级大小,绘制散点不一的地震分布图,如图12.21所示。

plt.style.use('ggplot')
plt.figure(figsize=(10,6))

map5 = Basemap(projection='robin', lat_0=39.9, lon_0=116.3,
               resolution = 'l', area_thresh = 1000.0) 

map5.drawcoastlines()
map5.drawcountries()
map5.drawmapboundary()

map5.drawmeridians(np.arange(0, 360, 30))
map5.drawparallels(np.arange(-90, 90, 30))

size = 2    #初始化大小
for lon, lat, mag in zip(list(eq_data['longitude']), list(eq_data['latitude']), list(eq_data['mag'])):
    x,y = map5(lon, lat)
    msize = mag * size     #不同震级大小不一样
    map5.plot(x, y, 'ro', markersize=msize)


图12.21 全球地震分布图(2)
通过以下代码,定义一个函数,可通过不同震级绘制颜色不同的地图,如图12.22所示。

def get_marker_color(mag):
    if mag < 3.0:
        return ('go')
    elif mag < 5.0:
        return ('yo')
    else:
        return ('ro')      #定义设置颜色函数

plt.style.use('ggplot')
plt.figure(figsize=(10,6))

map6 = Basemap(projection='robin', lat_0=39.9, lon_0=116.3,
               resolution = 'l', area_thresh = 1000.0) 

map6.drawcoastlines()
map6.drawcountries()
map6.drawmapboundary()

map6.drawmeridians(np.arange(0, 360, 30))
map6.drawparallels(np.arange(-90, 90, 30))

size = 2
for lon, lat, mag in zip(list(eq_data['longitude']), list(eq_data['latitude']), list(eq_data['mag'])):
    x,y = map6(lon, lat)
    msize = mag * size
    map6.plot(x, y, get_marker_color(mag), markersize=msize)   #调用函数

plt.title('Earthquakes')


图12.22 全球地震分布图(3)

pyecharts地图绘制

pyecharts也可以轻松绘制出美观可交互的地图。本节将讲解如何利用pyecharts绘制不同地区的地图,通过Geo方法在地图上绘制散点图。

地图

利用pyecharts绘制地图,需要下载地图js文件,通过pip进行安装,如图12.23所示。

pip install echarts-countries-pypkg        #全球国家地图
pip install echarts-china-provinces-pypkg  #中国省级地图
pip install echarts-china-cities-pypkg      #中国市级地图


图12.23 安装地图js
注意:安装好后记得重启jupyter notebook。
利用Map方法可绘制地图,代码如下。

value = [155, 78, 23, 65]
label = ["北京", "上海", "西藏", "广东"]
map1 = pyecharts.Map("全国地图示例")
map1.add("",label, value, maptype='china')
map1.render()   #生成html文件
该add方法的参数如下,maptype设置地图类型,支持china、world、中国省市名称等;is_roam可缩放地图;is_map_symbol_show显示地图红点。
add(name, attr, value,
    maptype='china',
    is_roam=True,
    is_map_symbol_show=True, **kwargs)

绘制的中国地图如图12.24所示。


图12.24 全国地图(1)
设置is_label_show=True,可以显示各省份名称,代码如下,如图12.25所示。

value = [155, 78, 23, 65]
label = ["北京", "上海", "西藏", "广东"]
map1 = pyecharts.Map("全国地图示例", width=1200, height=600)
map1.add("",label, value, maptype='china', is_label_show=True)
map1.render()   #生成html文件


图12.25 全国地图(2)
结合Visualmap可以美化地图,根据值显示不同颜色,代码如下,如图12.26所示。

value = [155, 78, 23, 65]
label = ["北京", "上海", "西藏", "广东"]
map1 = pyecharts.Map("全国地图示例", width=1200, height=600)
map1.add("",label, value, maptype='china', is_visualmap=True,
        visual_text_color='#000')
map1.render()   #生成html文件


图12.26 全国地图(3)
修改maptype参数可以绘制省级地图,代码如下,如图12.27所示。

value = [233, 102, 41, 82]
attr = ['武汉市', '咸宁市', '黄冈市', '黄石市']
map1 = pyecharts.Map("湖北省地图")
map1.add("", attr, value, maptype='湖北', is_visualmap=True,
        visual_text_color='#000')
map1.render()


图12.27 湖北省地图
修改maptype参数为world可以绘制世界地图,代码如下,如图12.28所示。

value = [46, 54, 45, 82, 45]
attr= ["China", "Canada", "Brazil", "Russia", "United States"]
map1 = pyecharts.Map("世界地图", width=1200, height=600)
map1.add("", attr, value, maptype="world", is_visualmap=True,
        visual_text_color='#000', is_map_symbol_show=False)
map1.render()


图12.28 全球地图

地图坐标系

地图坐标系组件用于地图的绘制,支持在地图上绘制散点图,线集。利用Geo方法可在地图上绘制散点图等,代码如下。

data = [
    ('上海', 78),('武汉', 56),('长沙', 45),('北京', 65),('苏州', 32),('盐城', 15),
    ('南昌', 87),('青岛', 45),('广州', 78),('拉萨', 12),('桂林', 21),('西安', 42),
    ('济南', 12)]

geo = pyecharts.Geo("地图绘制案例一",
          title_pos="center", width=1200,
          height=600)
attr, value = geo.cast(data)
geo.add("", attr, value, visual_range=[0, 100], visual_text_color="#fff",
        geo_normal_color="#FFFFFF",
        symbol_size=15, is_visualmap=True)
geo.render()

该add方法的参数如下,type设置图例类型,'scatter', 'effectScatter', 'heatmap'可选;
symbol_size为散点图大小;
border_color设置地图边界颜色;
geo_normal_color为正常情况下地图区域颜色;
geo_emphasis_color为高亮下地图区域的颜色。

add(name, attr, value,
    type="scatter",
    maptype='china',
    symbol_size=12,
    border_color="#111",
    geo_normal_color="#323c48",
    geo_emphasis_color="#2a333d",
    is_roam=True, **kwargs)

绘制的地图如图12.29所示。


图12.29 案例一
修改type参数,更改为heatmap,代码如下,如图12.30所示。

data = [
    ('上海', 78),('武汉', 56),('长沙', 45),('北京', 65),('苏州', 32),('盐城', 15),
    ('南昌', 87),('青岛', 45),('广州', 78),('拉萨', 12),('桂林', 21),('西安', 42),
    ('济南', 12)]

geo = pyecharts.Geo("地图绘制案例二",
          title_pos="center", width=1200,
          height=600)
attr, value = geo.cast(data)
geo.add("", attr, value, type='heatmap', visual_range=[0, 100], visual_text_color="#fff",
        geo_normal_color="#FFFFFF",
        symbol_size=15, is_visualmap=True)
geo.render()


图12.30 案例二

热门相关:最强狂兵   夫人,你马甲又掉了!   无限杀路   最强反套路系统   无限杀路