spark 流处理的几个实例
最近写了几个简单的spark structured streaming 的代码实例。 目的是熟悉spark 开发环境搭建, spark 代码开发流程。
开发环境:
系统:win 11
java : 1.8
scala:2.13
工具:idea 2022.2 ,maven 3, git 2.37
spark : 3.3.2
一, 使用 spark 结构化流读取文件数据,并做单词统计。
代码:
package org.example;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.OutputMode;
import org.apache.spark.sql.streaming.StreamingQuery;
import org.apache.spark.sql.streaming.StreamingQueryException;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructType;
import java.util.concurrent.TimeoutException;
public class Main {
/*
例子:从文件中读取流, 被定义模式,生成dataset ,使用sql api 进行分析。
*/
public static void main(String[] args) throws TimeoutException, StreamingQueryException {
System.out.println("Hello world!");
SparkSession spark = SparkSession.builder().appName("spark streaming").config("spark.master", "local")
.config("spark.sql.warehouse.dir", "file:///app/")
.getOrCreate();
spark.sparkContext().setLogLevel("ERROR");
StructType schema =
new StructType().add("empId", DataTypes.StringType).add("empName", DataTypes.StringType)
.add("department", DataTypes.StringType);
Dataset<Row> rawData = spark.readStream().option("header", false).format("csv").schema(schema)
.csv("D:/za/spark_data/*.csv");
rawData.createOrReplaceTempView("empData");
Dataset<Row> result = spark.sql("select count(*), department from empData group by department");
StreamingQuery query = result.writeStream().outputMode("complete").format("console").start(); // 每次触发,全表输出
query.awaitTermination();
}
}
输出:
二, 使用 spark 结构化流读取socket流,做单词统计,使用Java编程
代码:
package org.example;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Encoders;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.streaming.StreamingQuery;
import org.apache.spark.sql.streaming.StreamingQueryException;
import java.util.Arrays;
import java.util.concurrent.TimeoutException;
public class SocketStreaming_wordcount {
/*
* 从socket 读取字符流,并做word count分析
*
* */
public static void main(String[] args) throws TimeoutException, StreamingQueryException {
SparkSession spark = SparkSession
.builder()
.appName("JavaStructuredNetworkWordCount")
.config("spark.master", "local")
.getOrCreate();
// dataframe 表示 socket 字符流
Dataset<Row> lines = spark
.readStream()
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load();
// 把一行字符串切分为 单词
Dataset<String> words = lines
.as(Encoders.STRING())
.flatMap((FlatMapFunction<String, String>) x -> Arrays.asList(x.split(" ")).iterator(), Encoders.STRING());
// 对单词分组计数
Dataset<Row> wordCounts = words.groupBy("value").count();
// 开始查询并打印输出到console
StreamingQuery query = wordCounts.writeStream()
.outputMode("complete")
.format("console")
.start();
query.awaitTermination();
}
}
输出:
二, 使用 spark 结构化流读取socket流,做单词统计,使用scala 编程
代码:
package org.example
import org.apache.spark.sql.SparkSession
object Main {
def main(args: Array[String]): Unit = {
val spark = SparkSession
.builder
.appName("streaming_socket_scala")
.config("spark.master", "local")
.getOrCreate()
import spark.implicits._
// 创建datafram 象征从网络socket 接收流
val lines = spark.readStream
.format("socket")
.option("host", "localhost")
.option("port", 9999)
.load()
// 切分一行成单词
val words = lines.as[String].flatMap(_.split(" "))
// 进行单词统计
val wordCounts = words.groupBy("value").count()
// 开始查询并输出
val query = wordCounts.writeStream
.outputMode("complete")
.format("console")
.start()
query.awaitTermination()
}
}
输出:
功能比较简单,代码比较简单,可以在网络上找到很多。 但是也是一个完整的spark结构流代码开发流程。权当熟悉下开发流程。
---一------步-----一 ------个-----脚--------印----------