高并发场景下,6种解决SimpleDateFormat类的线程安全问题方法
摘要:解决SimpleDateFormat类在高并发场景下的线程安全问题可以有多种方式,这里,就列举几个常用的方式供参考。
本文分享自华为云社区《【高并发】更正SimpleDateFormat类线程不安全问题分析的错误》,作者: 冰 河 。
解决SimpleDateFormat类在高并发场景下的线程安全问题可以有多种方式,这里,就列举几个常用的方式供参考,大家也可以在评论区给出更多的解决方案。
1.局部变量法
最简单的一种方式就是将SimpleDateFormat类对象定义成局部变量,如下所示的代码,将SimpleDateFormat类对象定义在parse(String)方法的上面,即可解决问题。
package io.binghe.concurrent.lab06; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * @author binghe * @version 1.0.0 * @description 局部变量法解决SimpleDateFormat类的线程安全问题 */ public class SimpleDateFormatTest02 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd"); simpleDateFormat.parse("2020-01-01"); } catch (ParseException e) { System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); }catch (NumberFormatException e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
此时运行修改后的程序,输出结果如下所示。
所有线程格式化日期成功
至于在高并发场景下使用局部变量为何能解决线程的安全问题,会在【JVM专题】的JVM内存模式相关内容中深入剖析,这里不做过多的介绍了。
当然,这种方式在高并发下会创建大量的SimpleDateFormat类对象,影响程序的性能,所以,这种方式在实际生产环境不太被推荐。
2.synchronized锁方式
将SimpleDateFormat类对象定义成全局静态变量,此时所有线程共享SimpleDateFormat类对象,此时在调用格式化时间的方法时,对SimpleDateFormat对象进行同步即可,代码如下所示。
package io.binghe.concurrent.lab06; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * @author binghe * @version 1.0.0 * @description 通过Synchronized锁解决SimpleDateFormat类的线程安全问题 */ public class SimpleDateFormatTest03 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; //SimpleDateFormat对象 private static SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd"); public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { synchronized (simpleDateFormat){ simpleDateFormat.parse("2020-01-01"); } } catch (ParseException e) { System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); }catch (NumberFormatException e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
此时,解决问题的关键代码如下所示。
synchronized (simpleDateFormat){ simpleDateFormat.parse("2020-01-01"); }
运行程序,输出结果如下所示。
所有线程格式化日期成功
需要注意的是,虽然这种方式能够解决SimpleDateFormat类的线程安全问题,但是由于在程序的执行过程中,为SimpleDateFormat类对象加上了synchronized锁,导致同一时刻只能有一个线程执行parse(String)方法。此时,会影响程序的执行性能,在要求高并发的生产环境下,此种方式也是不太推荐使用的。
3.Lock锁方式
Lock锁方式与synchronized锁方式实现原理相同,都是在高并发下通过JVM的锁机制来保证程序的线程安全。通过Lock锁方式解决问题的代码如下所示。
package io.binghe.concurrent.lab06; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /** * @author binghe * @version 1.0.0 * @description 通过Lock锁解决SimpleDateFormat类的线程安全问题 */ public class SimpleDateFormatTest04 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; //SimpleDateFormat对象 private static SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd"); //Lock对象 private static Lock lock = new ReentrantLock(); public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { lock.lock(); simpleDateFormat.parse("2020-01-01"); } catch (ParseException e) { System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); }catch (NumberFormatException e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); }finally { lock.unlock(); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
通过代码可以得知,首先,定义了一个Lock类型的全局静态变量作为加锁和释放锁的句柄。然后在simpleDateFormat.parse(String)代码之前通过lock.lock()加锁。这里需要注意的一点是:为防止程序抛出异常而导致锁不能被释放,一定要将释放锁的操作放到finally代码块中,如下所示。
finally { lock.unlock(); }
运行程序,输出结果如下所示。
所有线程格式化日期成功
此种方式同样会影响高并发场景下的性能,不太建议在高并发的生产环境使用。
4.ThreadLocal方式
使用ThreadLocal存储每个线程拥有的SimpleDateFormat对象的副本,能够有效的避免多线程造成的线程安全问题,使用ThreadLocal解决线程安全问题的代码如下所示。
package io.binghe.concurrent.lab06; import java.text.DateFormat; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * @author binghe * @version 1.0.0 * @description 通过ThreadLocal解决SimpleDateFormat类的线程安全问题 */ public class SimpleDateFormatTest05 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; private static ThreadLocal<DateFormat> threadLocal = new ThreadLocal<DateFormat>(){ @Override protected DateFormat initialValue() { return new SimpleDateFormat("yyyy-MM-dd"); } }; public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { threadLocal.get().parse("2020-01-01"); } catch (ParseException e) { System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); }catch (NumberFormatException e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
通过代码可以得知,将每个线程使用的SimpleDateFormat副本保存在ThreadLocal中,各个线程在使用时互不干扰,从而解决了线程安全问题。
运行程序,输出结果如下所示。
所有线程格式化日期成功
此种方式运行效率比较高,推荐在高并发业务场景的生产环境使用。
另外,使用ThreadLocal也可以写成如下形式的代码,效果是一样的。
package io.binghe.concurrent.lab06; import java.text.DateFormat; import java.text.ParseException; import java.text.SimpleDateFormat; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * @author binghe * @version 1.0.0 * @description 通过ThreadLocal解决SimpleDateFormat类的线程安全问题 */ public class SimpleDateFormatTest06 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; private static ThreadLocal<DateFormat> threadLocal = new ThreadLocal<DateFormat>(); private static DateFormat getDateFormat(){ DateFormat dateFormat = threadLocal.get(); if(dateFormat == null){ dateFormat = new SimpleDateFormat("yyyy-MM-dd"); threadLocal.set(dateFormat); } return dateFormat; } public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { getDateFormat().parse("2020-01-01"); } catch (ParseException e) { System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); }catch (NumberFormatException e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
5.DateTimeFormatter方式
DateTimeFormatter是Java8提供的新的日期时间API中的类,DateTimeFormatter类是线程安全的,可以在高并发场景下直接使用DateTimeFormatter类来处理日期的格式化操作。代码如下所示。
package io.binghe.concurrent.lab06; import java.time.LocalDate; import java.time.format.DateTimeFormatter; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * @author binghe * @version 1.0.0 * @description 通过DateTimeFormatter类解决线程安全问题 */ public class SimpleDateFormatTest07 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; private static DateTimeFormatter formatter = DateTimeFormatter.ofPattern("yyyy-MM-dd"); public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { LocalDate.parse("2020-01-01", formatter); }catch (Exception e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
可以看到,DateTimeFormatter类是线程安全的,可以在高并发场景下直接使用DateTimeFormatter类来处理日期的格式化操作。
运行程序,输出结果如下所示。
所有线程格式化日期成功
使用DateTimeFormatter类来处理日期的格式化操作运行效率比较高,推荐在高并发业务场景的生产环境使用。
6.joda-time方式
joda-time是第三方处理日期时间格式化的类库,是线程安全的。如果使用joda-time来处理日期和时间的格式化,则需要引入第三方类库。这里,以Maven为例,如下所示引入joda-time库。
<dependency> <groupId>joda-time</groupId> <artifactId>joda-time</artifactId> <version>2.9.9</version> </dependency>
引入joda-time库后,实现的程序代码如下所示。
package io.binghe.concurrent.lab06; import org.joda.time.DateTime; import org.joda.time.format.DateTimeFormat; import org.joda.time.format.DateTimeFormatter; import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Semaphore; /** * @author binghe * @version 1.0.0 * @description 通过DateTimeFormatter类解决线程安全问题 */ public class SimpleDateFormatTest08 { //执行总次数 private static final int EXECUTE_COUNT = 1000; //同时运行的线程数量 private static final int THREAD_COUNT = 20; private static DateTimeFormatter dateTimeFormatter = DateTimeFormat.forPattern("yyyy-MM-dd"); public static void main(String[] args) throws InterruptedException { final Semaphore semaphore = new Semaphore(THREAD_COUNT); final CountDownLatch countDownLatch = new CountDownLatch(EXECUTE_COUNT); ExecutorService executorService = Executors.newCachedThreadPool(); for (int i = 0; i < EXECUTE_COUNT; i++){ executorService.execute(() -> { try { semaphore.acquire(); try { DateTime.parse("2020-01-01", dateTimeFormatter).toDate(); }catch (Exception e){ System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败"); e.printStackTrace(); System.exit(1); } semaphore.release(); } catch (InterruptedException e) { System.out.println("信号量发生错误"); e.printStackTrace(); System.exit(1); } countDownLatch.countDown(); }); } countDownLatch.await(); executorService.shutdown(); System.out.println("所有线程格式化日期成功"); } }
这里,需要注意的是:DateTime类是org.joda.time包下的类,DateTimeFormat类和DateTimeFormatter类都是org.joda.time.format包下的类,如下所示。
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
运行程序,输出结果如下所示。
所有线程格式化日期成功
使用joda-time库来处理日期的格式化操作运行效率比较高,推荐在高并发业务场景的生产环境使用。
解决SimpleDateFormat类的线程安全问题的方案总结
综上所示:在解决解决SimpleDateFormat类的线程安全问题的几种方案中,局部变量法由于线程每次执行格式化时间时,都会创建SimpleDateFormat类的对象,这会导致创建大量的SimpleDateFormat对象,浪费运行空间和消耗服务器的性能,因为JVM创建和销毁对象是要耗费性能的。所以,不推荐在高并发要求的生产环境使用。
synchronized锁方式和Lock锁方式在处理问题的本质上是一致的,通过加锁的方式,使同一时刻只能有一个线程执行格式化日期和时间的操作。这种方式虽然减少了SimpleDateFormat对象的创建,但是由于同步锁的存在,导致性能下降,所以,不推荐在高并发要求的生产环境使用。
ThreadLocal通过保存各个线程的SimpleDateFormat类对象的副本,使每个线程在运行时,各自使用自身绑定的SimpleDateFormat对象,互不干扰,执行性能比较高,推荐在高并发的生产环境使用。
DateTimeFormatter是Java 8中提供的处理日期和时间的类,DateTimeFormatter类本身就是线程安全的,经压测,DateTimeFormatter类处理日期和时间的性能效果还不错(后文单独写一篇关于高并发下性能压测的文章)。所以,推荐在高并发场景下的生产环境使用。
joda-time是第三方处理日期和时间的类库,线程安全,性能经过高并发的考验,推荐在高并发场景下的生产环境使用。
热门相关:恭喜你被逮捕了 回眸医笑,冷王的神秘嫡妃 花月颂 花月颂 花月颂