AtCoder Beginner Contest 302 H. Ball Collector 题解 可撤销并查集

为了更好的阅读体验,请单击这里

AtCoder Beginner Contest 302 H. Ball Collector

题意跳过。

可以视作将 \(a_i, b_i\) 之间连了一条边,然后 \(a_i, b_i\) 之间只能选一个等价于对于一条边只能选择其一个端点。那么对于只包含树的联通块而言,如果都选择儿子节点,那么会有一个根节点无法被选择上;而对于包含至少一个环的联通块而言,所有节点都可以被选择上,例如,可以先找出环,然后利用环上的边将环上的点都选上,然后对于连上环的边,选上边另一头的节点即可,这样慢慢延申到整个联通块。

因此,答案为:所有节点个数 - 树联通块个数

于是问题就转化为如何维护树联通块个数了。

可以使用并查集维护每一个联通块内包含的边的个数,这样每一个联通块是否为树就很好判断了。如果这是一条链,那么并查集非常好操作,但是这是一棵树,于是需要回退操作。于是可以使用可撤销并查集来做。

由于路径压缩会破坏联通块的结构,因此可撤销并查集仅使用启发式合并/按秩合并的方式,具体为开一个栈记录每次更新时原来的信息,例如代码假设是把 \(u\) 节点合并进入 \(v\) 节点,那么要记录 \(u, v, pa_u\) 这三个值。时间复杂度与仅使用启发式合并时间复杂度相同:\(O(n \log n)\)

#include<bits/stdc++.h>
using namespace std;

typedef long long ll;
typedef double db;
typedef long double ld;

#define IL inline
#define fi first
#define se second
#define mk make_pair
#define pb push_back
#define SZ(x) (int)(x).size()
#define ALL(x) (x).begin(), (x).end()
#define dbg1(x) cout << #x << " = " << x << ", "
#define dbg2(x) cout << #x << " = " << x << endl

template<typename Tp> IL void read(Tp &x) {
    x=0; int f=1; char ch=getchar();
    while(!isdigit(ch)) {if(ch == '-') f=-1; ch=getchar();}
    while(isdigit(ch)) { x=x*10+ch-'0'; ch=getchar();}
    x *= f;
}
int buf[42];
template<typename Tp> IL void write(Tp x) {
    int p = 0;
    if(x < 0) { putchar('-'); x=-x;}
    if(x == 0) { putchar('0'); return;}
    while(x) {
        buf[++p] = x % 10;
        x /= 10;
    }
    for(int i=p;i;i--) putchar('0' + buf[i]);
}

const int N = 200000 + 5;

int n, tree_cnt = 0;
int a[N], b[N];
int pa[N], sz[N], cnt[N], col[N], ans[N];
stack<array<int, 3> > sta; // 假设上一次操作是 u -> v,那么 0 -> u, 1 -> v, 2 -> pa[u]
vector<int> G[N];

void solve() {
    read(n);
    for (int i = 0; i < n; i++) {
        read(a[i]); a[i]--;
        read(b[i]); b[i]--;
    }
    for (int i = 0; i < n - 1; i++) {
        int u, v; read(u); read(v); u--; v--;
        G[u].pb(v); G[v].pb(u);
    }
    fill(sz, sz + n, 1);
    fill(cnt, cnt + n, 0);
    iota(pa, pa + n, 0);
    function < int(int) > findset = [&] (int u) {
        return u == pa[u] ? u : findset(pa[u]);
    };
    auto merge = [&] (int u, int v) {
        int fu = findset(u), fv = findset(v);
        if (sz[fu] > sz[fv]) { swap(fu, fv); swap(u, v);}
        sta.push({fu, fv, pa[fu]});
        pa[fu] = fv; sz[fv] += sz[fu]; cnt[fv] += cnt[fu] + 1;
    };
    auto undo = [&] () {
        auto now = sta.top(); sta.pop();
        int fu = now[0], fv = now[1], pfu = now[2];
        pa[fu] = pfu; sz[fv] -= sz[fu]; cnt[fv] -= cnt[fu] + 1;
    };
    tree_cnt = n;
    function < void(int, int) > dfs = [&](int u, int fa) {
        int fau = findset(a[u]), fbu = findset(b[u]);
        if (fau == fbu) {
            if ((cnt[fau]++) == sz[fau] - 1) {
                tree_cnt --;
            }
        }
        else {
            if (sz[fau] == cnt[fau] + 1 || sz[fbu] == cnt[fbu] + 1) tree_cnt --;
            merge(a[u], b[u]);
        }
        ans[u] = n - tree_cnt;
        for (int v : G[u]) {
            if (v == fa) continue;
            dfs(v, u);
        }
        if (fau != fbu) {
            undo();
            if (sz[fau] == cnt[fau] + 1 || sz[fbu] == cnt[fbu] + 1) tree_cnt++;
        }
        else if ((--cnt[fau]) == sz[fau] - 1) {
            tree_cnt ++;
        }
    };
    dfs(0, -1);
    for (int i = 1; i < n; i++) {
        write(ans[i]); putchar(" \n"[i == n - 1]);
    }
}

int main() {
#ifdef LOCAL
    freopen("test.in", "r", stdin);
    // freopen("test.out", "w", stdout);
#endif
    int T = 1;
    // read(T);
    while(T--) solve();
    return 0;
}

热门相关:仙城纪   修仙界最后的单纯   最强反套路系统      重生当学神,又又又考第一了!